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Every quotient group of an abelian
group is:

() Cyclic

®) NonAbelian

(C) Abelian

(D) Complex

Let
permutations on these symbols with

S, be the group of all

identity element e. Then the number
- of elements in S, that satisfy the
equation xX=eis:

(A) 2

|) 4
(C) 3
D) 1
The number of elements in the
'conjugacy class of the three cycle
(234) in the.Symmetric group Sgis :
(A) 120

(B) 60

(C) 20

(D) 40

A commutative ring with unity is a field
ifithas : '

(A) Ideals

- (B) Homomorphism

(C) Isomorphism

(D) No properideals

ZI-6A/12

(2)

If Ris a unique factorization domain
and a is non-unitin R then a can be

éxpressed as a product of :

(A) Infinite number of_.prime
elements of R

(B) Finite number of prime

elements of R

_(C) Finite number of ideal elements

of R
(D) None ofthese

The field of quotients F of integral
domain D is the :

(A) Extension of field

(B) Largestfield containing D

(C) Smallest field containing D

(D) Smallest Ideal

Let Q be the field of rational
numbers. The field Q (JE):

{a+b~/§:a,beQ} isa:
(A) Finite extension of field Q of

rational numbers

(B) Finite extension of field of real

numbers

(C) Finite extension of field of

irrational numbers

(D) None ofthese
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8. If pis aprime and a is any integer
such that p is not a divisor of a so
that (a, p) = 1then:

(A) aP'is congruence to 0 mod p
(B) aP'is congruence to 1 mod p
(C) aPiscongruenceto 1 mod p
(D) aPisnotcongruenceto 1 mod p
9. Applying Wilson's theorem 16 | + 86
is divisible by :
(A) 321
(B) 231
(C) 171
D) 323
10. ByFemmatstheoremif (n, 7)=1, then
n2-1is: :
(A) Divisible by 7
(B) Divisible by 3
(C) Divisible by 11
(D) Divisible by 2

11. Natural domain of the function
(x| +sgn(x)) /([x]) is :
(A) R-{0}
() R-{1}
(C) R—-{0<x<1}
(D) R-{3}
12. The number of limit points in every
infinite and bounded set s :
(A) One
(B) Atleastone
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13:

14.

15.

16.

(C) Infinite
(D) Zero
2L omud
The sequence x_= M £ L0 is:
n n+9

(A) Divergent

(B) Convergent

(C) Constantsequence
(D) Oscillatory

[= o]
: cosnx .
The series Y = 18

n="1 ",

(A) Divergent

(B) Convergent

(C) Constant sequence

(D) Oscillatory

Taylor series expansion of sin x at
X=Tis: \

A) X=x3131+x8 /Bl m
B) x—x2/20+x* 4.
(C) —x—m)+(x—1)>/3— oo
(D) None ofthese :

A function continuous on a cbmpact
domainis :

(A) Absolute continuous

(B) Continuous but not uniformly
(C) Discontinuous

(D) Uniformly continuous

(Tum over)



17.

18..

19.

20.

)

The minimum value of the function

f(x, y) = X2 + y2 + 41 over the real '

domainis :
A O
(B) 41
) 1
(D) 21

By Greens theorem value of integral

:ﬁ(cosx siny — xy)dx + sinx cosy dy,
c

where C is unit circle is :
(A) O
B) 1
(C) 2n
(D) n

Area of ellipse x =a cos8, y = b sin®, .

0<0<2nis:

A 1

(B) 2n

(C) mab

(D) ma

Gauss divergence theorem is used
to convert :

(A) Line integral to surface integral

Line integral to double integral
and vice versa
(C) Surface integral to volume

integral and vice-versa

(D) None of these
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21

22.

23,

24,

If Z is conjugate of z then f(z) = elis:

(A) Analytic everywhere

(B) Analytic at origin
(C) Nowhere analytic

(D) Notanalytic at origin

Iff = u +iv is an analytic function in D
and arg f(z) = constant then f'(2) :

(A)
(B)
(C)
(D)

Does not exist

Zer§

Purely imaginary

Con#tant

If f(z) = u + i v is analytic with u =
2= y2 is harmonic then f(z) i;e, 2

(A) Z+ic

(B) z+ic

(C) Z+ic

(D) sinz+ic

The tr_ansformatio_n w=f(z)=z el
represents :

(A) Rotation and Magnification
(B) Translation
(€)

Magnification

Rotation

(D)

Contd.
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26.

27.

28.

The bilinear transformation w =

2z + 3 :
. map the circle X2 + y2 —4x =

Oonto the :
(A)
(B)
(C)
(D)

Straightline4u+3=0
Circle u? +v2 —4v =0
Straightline2u+3=0
Straightline4u+1=0

For complex number z the value of
cosh?z—sinh?zis :

(A) 1+i

(B) 1-2i

(C) 1

(D) i

Cauchy'’s integral formula is used to
solve :

(A)
(B)
(©)

(D)

Initial value problem
Integral in complex domain
Boundary value problem

Integral equation

The type and location of singularity
e - :
(A) Removable singularity atz = 0
(B)
(C)

(D)

Essential singularityatz=0
Essential singularity atz =1

Poleatz=0
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29.

30.

31.

32.

Using Residue theorem evaluate :

iy i
J' > _Z 3 C:|z| = 5 counter-clockwise :

(A 2mi
B) =n
(C) i
(D) 2n

The value of integral _[: SINX dxis -
X

(A) m
(B) 3n
(C) 2n

T

© 5

The artificial variable is required in
simplex method :

(A)
(B)
(©)

In aksence of slack variable
In absence of surplus variable

In absence of surplus and slack

variables
(D) = If basis matrix is not unit matrix

after using surplus and slack
variables

In dual simplex method initial basic
feasible solution is :

(A)
(B)
(C)
(D)

Optimal but not feasible

Feasible
Not optimal

None of these
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33.

35.

36.

@

programming problem yields the
integer solution, then the current

solution is :

(A) Unbounded but feasible
(B) Unbounded

()
(D)

Optimal

Infeasible

Let n, m be number of variables and

constraints respectively. A

degenerate feasible solution in
simplex method is a feasible solution
at which more than usual (n — m)

number of variables are :

(A 0

B) 1

(C) 2

(D) 3

The size of the payoff matrix can be
reduced by using :

Rotation principle

(B)
(©)
(D)

Transpose principle
Inversion principle

Dominance principle

Which method gives best result for
initial BFS of transportation
problem ?

(A)

(B) . Matrix minima method

North-west corner rule

ZI - 6A/12

If the optimal solution to the linear

(6)

37.

38.

39.

- (B)

(C) Vogels approximation method

(D) Row minima method

The dual of dual problem in LPP is :
(A)
(B)
(©)
(D)

Constraint
Dual problem
Feasible

Primal problem

In a dual problem we write original
LPP in another form without affecting -
its :
(A)
(B)
(©)
(D)

Objective function
Optimality
Constraints

Unrestricted variable

Inabalanced transportation problem
if all unit transportation cost Cij are
decreased by a non-zero constanta
then optimal solution of revised
problem :

(A) Values of decision variables
~ change but objective value’
: remain unchanged

Values of decision variables
and objective value remain
unchanged

(C) Values of decision variables
rerﬁain unchanged but
objective value changes e
(D)

-Values of decision variables

and objective value change

Contd.



40.

41.

42.

43.

The unit cost C;;of producing product
i at plant j is given by the matrix

14 12 16
21 9 17|. The total cost of the

S

optimal assignment is :

(A) 25

(B) 20

(C) 22

(D) 28

Which numerical method to find

solution of transcendental equation
converges faster ?

(A) Secant method

(B) Newton’s method

(C) One point iteration method

(D) Bisection method

The rate of convergence of Newtbn's
method is :

(A) 1

(B) 1.618

C) 2

© 3

For which of the following function
x? = 5 is a fixed point ?

(A) g()=x5

4
(B) gx)=1+ ek

(C) g(x)=x*-4x
(D) g(x)= J/5x
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44. The value of third order forward

45.

46.

difference from following data s :

x | f(x)
0113
2127
4 |49
6173

@™ 1

B) -3

(C) 0O

(D) -6

Which interpolation is used for equi-
spaced data ?

(A)
(B)
(©)

Newtons forward interpolation

Lagranges interpolaﬁon

interpolation
(D)

Which is related to Trapezoidal rule

Spline interpolation

for numerical integration ?

h
(A) 5[y0+y,,+2(v2+y4+,..)+4
(Yytyz+.)

h

(B) E[yo + yl'l + 2(y1 = y2 toomt
Y1)l
G h + 2 + +
( ) '-z_lyo (y1 yz 1100 §

y,)]
(D) None ofthese

( Turn over)
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47.

48.

49.

50.

51.

ZI-6A/12

(D)

The local truncation error for Euler's
method is :

A 0()
(8) Ofh)
) o)
D) O}

For Simpson’s 3rd rule the number
of sub-intervals n mustbe :

A)
(B)
(©)
(D)

Runge-Kutta method is applicable to

Even

Odd
Multiple of 3
Multiple of 5

solve :

(A) First order ODE
(B) First order PDE
(C) Second order ODE
(D) Second order PDE

In quer's method to solve ordinary
differential equation :

A Yaq =Yy th2FX, Y,

(B) Yy =hflx,y,)

©) Y =%, *hf(x,y,)

Yoer =Yn th Y,

Each of the following subsets ¢ R,

(0, 1), [0, 1] of R with the usual metric
is:

(A) Complete
(B) Compact

(8)

52.

53.

(C) Connected
(D) Bounded

Let f : [0, 1] — R be a bounded
Riemann integrable function and g :
R — R be continuous then gofis :

(A)
(B)
(©)
(D)

For subset A of a metric space which

Riemann integrable
Continuous
Lebesgue integrable

Not necessarily measureable

of the following implies the other
three :

(A) Aisclosed

(B) Aisbounded

(C) Closure of B is compact for
everyBCA

(D)

A is compact
In the interval [- 1, 1] the series

2
is:

X2 +n
3

5 o
n=1

(A) Uniformly and absolutely

convergent
(B) Uniformly buf not absolutely
convergent '
(C) Neither uniformly nor absolutely
convergent
Absolutely convergent but not

(D)

uniformly convergent

Contd.



55. Thesequence (f ) where f (x) = x"is

uniformly convergentin [0, k] if :

(A) k=2
(B) k>1
(C) 0<k<1
(D) k=3
56. LetAbe the setof points in the interval
(0, 1) representing the numbers
whose expansion as infinite
decimals do not contain the digit 7.
Then the measure of Ais :
(A)- 0
B) 1
(C) 2
(D) e
o0 n
57. The series Jxls1is:
; nyn +1 bk
n=1
(A) Uniformly but not absolutely
convergent
(B) Uniformly and absolutely
convergent
(C) Divergent
(D) Absolutely convergent but not
uniformly convergent
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58.

59.

60.

A uniformly continuous function is :
(A) Not méasura_ble

(B)
(C)

Measurable and simple
Integrable and simple

(D)

Measurable

Fatou's lemma is related to :
(A)
(B)
(€)

Open mapping theorem
Riemann integral

Monotone convergence

theorem
Fundamental theorem of

(D)

calculus

Let E be a non-measurable subset

of (0, 1), define function f, and f2 in

e rea
(0, 1) as f1 (x) = {X and
0,if xeE
0if xeE :
f,(x)= then :
2 () -5ﬁxee

(A) f,is measurable but not f,
(B) Bothf, and f2 are measurable
(C) Neitherf, nor f2 is measurable

(D) None of these

(Tum over)



61.

62.

63.

Given a non-trivial normed linear
space, the non-triviality of its dual
space is assured by :

(A)

(B)

Hahn-Banach theorem

Principle of uniform bounded-

ness
(©)
(D)

Open mapping theorem

Closed graph theorem

All norms of a normed vector space

X are equivalent provided :
(A)
(B)
(©)
(D)

The norm of the linear functional
f defined on C[- 1, 1] by f(x) =

X is reflexive
X is complete
X is finite dimensional

X is an inner product space

2, xt dt— [ xo dtis

® 0 |

| 1 .

©) 2

D) 3

Wheré C[- 1, 1] denote:; Banach

space of all real valued functions on

-1,1].
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65.

66.

Which of the following Banach space

is not separable ?
A L' 1]
(B) L7[0,1]

©) L2[0,1]

(D) C[0,1]

Consider the Banach space C[O. |

with the supremum norm. The norm

of the lineair functional L : C [0, 1] — R
givenby L (f) = [ f(x) sin? xdxis :
A) 0

®) 1

C) =

(D) 2=

Let B be a Banach space (not finite
dimensional) and T : B — B be a
continuous operator such that range
of T is B and T(x).= 0 implies x = 0.
Then:

(A) T maps bounded sets to

compact sets

(B) : maps bounded sets to

compact sets

(©) T~ ' maps bounded sets to

bounded sets
(D) T maps compact sets to open

sets

Contd.



67. Lethesequence (a ) be acomplete

68.

orthonormal set in a Hilbert space H.

Then:
(A) bounded

operators T on H, the sequence

For all linear

(T an) is convergent in H
(B) Forthe idenfity operator|onH,
the sequence (la ) is conver-
gentinH
(C) bounded

operators f on H, sequence

For all

(an) is convergentin R

bounded

operators T on H, sequence

For all linear

(D)

(Ta,) is divergentin H
For orthonormal set each vector has
norm:
(A) O
By 3
(C) 2
(D) 1

69. According to Gram Schmidt

(B)

Orthonormalisation every finite

dimensional inner product space

has :
(A) Norm zero

An orthonormal basis
(©)

(D)

Linear dependent vector

Negative element

Zl -6A/12

1.

linear

iy

(11)

70. Thespace 1p is a Hilbert space if and

T3

®

only if :

(A) p>1
(B) pisodd
(C) p=e
(D) p=2
The set of vectors (1, 0, 0), (0, 1,0), |
(0,0,0) are:
(A)
(B)
(©)
(D)

Linear independent
Linear dependent
Form a basis

None of these

Let W be a space spanned by f = sin x
and g = cosx. Then for any real

value of 8, f, = sin(x + 8),
g1=cos(x+6):

(A) Are vectors in W

Are linear independent
(©) Do.not form a basis.forW

D)

Form a basis for W

For 0 < 6 < =m, the matrix
[cose —sin 9]_ |

sin® cos6

(A) Has noreal eigen value

(B) Isorthogonal

(©)
(D)

Is symmetric

Is skew-symmetric

(Turnover)



74.

5.

76.

7

The eigen values of matrix

188
0 7 :23|are:
00 5|

A

(A)
(B)
(©)
(D)

0,2,4

%57

1,8,6

3.5,8

The mapping T : VZ(R) — V,(R) is
defined by T(a,b)=(a+b,a-b, b)
is a linear transformation from V,,(R)
into V,,(R). The rank and nullity of T
are:
(A)
(8)
(C)

Rank 1 and nullity O
Rank 1 and nullity 1
Rank 2 and nullity 1

(D) Rank2 and nullity 0

Let A and B be square matrices of

order n. The matrix B is similar to

ZI-6A/M12

; 1 3 16]"
‘The rank of matrixA= |0 9 7
' 09 15
is :
(A) O
(B) 1
(C) 2
(D) 3

79,

(12)

78.

80.

1
B=|2

matrix A if there is invertible square

matrix C of order n such that :
(A) B=AC

() A=B'CB
ECyB=C'AC

(D) C=AB

The trace of the matrix

16
7 lis:
5

a © W

18

18
10
15
22

(A)
(8)
©)
(D)
Let f be a bilinear form on a vector
space V over field F. The quadratic

form on V associated with bilinear
form f is the function q :

(A) q(@=0

(B) q(a)=f(a,a)forallainV
(C) q(a)=f(a,0)forallainV
(D) q(a)=f(0,a)forallainV

The eigen values of a skew
symmetric matrix are :

(A)
(B)
(©)
D)

Negative
Real
Abs_olute value one

Zero or purely imaginary

Contd.



-81.

82.

83.

85.

- ©
(D)

The negation of Tautology is a :
(A)
(B)
(©)
(D)

Simplification '
Disjunctive
Contradiction

Contrapositive

The implicationP,PvQ=Q:
(A)
(B)
(C)
(D)

Dilemma
Simplification
Disjunctive syllogism

Addition

A polygon with 7 sides can be

triangulated into :
(A) 5triangles

(B)
(C) 13 triéngles

11 triangles

(D) 7 triangles

Hasse diagrams are drawn for :
(A)
(B)

Boolean algebra
Adjacency matrix
Lattices

Partially ordered sets

Every finite lattice L is :
(A)
(B)
(C)
(D)

Bounded
Not bounded
Only has upper bound

Only has lower bound

ZI-6A/12
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(13)

86. Minimize the following Boolean

88.

89.

expression Boolean

identities :

F(A,B,C)=(A+BC’) (AB'+C) .
(A) AC'+B

(B) A(B' +C)

(C) A+B+C

(D) B+AC

What is the generating function for

using

generating series 1,2,4,8,16, ..... ?

2
(1-5x)

(A)

(C) 1-3x

o T2

What is the solution to the recurrencé
relatona_=6a . -9a_ ., n22with
a,=1,a,=9?

(A) 3n!

(B) n?+1

(C) 2n®

(D) (2n+1)3"

An edge of G that is not in a given
spanning tree is called :

(A) Rooted tree

(B) Branch

(C) Chord

(D) Path

( Turn over)



90.

g1.

92.

93.

In a 7-node directed cyclic graph, the
number of Hamiltonian cycleis tobe :

(A) 450

(B) 180

(C) 260

(D) 360

General solution of (D + 1)y = cos X
is :
(A)
(B)
©)
(D)

y =Acosx + B sinx
y =Acosx + B sinx + (x sin x)/2
y =Acosx + B sinx + x cosx

y=Acosx + B sinx + x% COSX

If P_ (x) is Legendre polynomial of

Xx,-1<x<0

0-0 Sx<1and

degreen, f(x) = {

f(x) = a, Po(x) +a, P1(x) +a, Pz(x) +

a,=0.25,a, =05
a,=-025,a,=05
a,=0.5,a,=0.25
(D)

General solution of the differéntial

a0=1,a1=0.5

dz

, y dy
uation'x—— —'——
o dx?

dx
Bessel's functionis :

(A) y=AxJ,(x)+BxY,(x)
(B) y=AJ,()+BY,(X)
(C) y=AxJ0(x)+BxY0(x)
(D) y=AJ\()+BY,(x)

+ xy = 0 using

ZI-6A/12
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g5.

(14)

Inverse Laplace transform of -
_1(8).
cot | —Lis.
T

sinmt
@ =

(B) sinmt
(€)

(D)

cosmt

t cosmt

The Laplace transform' of £ sin8t -
is :

16(S? + 64)

® (32 s 64)3

S
S% - 34s + 81

(B)

16(82 L 64)

e (32 + 64)3

o

(s? + 64)
Inverse Laplace transform of
PO 0
2
(s? +1)
(A)
(B)

is:

tcost

t cos 5t + 5 sin 5t

tsint

2 s

— 5t cos 5t + sin 5t

(D)

Contd.



transform

.97. Fourier sine of ' 5
: (C) i
10<x<t (k - iw)
f(x) = 0' x> £ s (D) 1
) 0 ' =
: . u 2O
99. The equation — = ¢“— is known
B) 1 omalion - = ¢ =3
sinw/ -as:
(C) ;
o (A) Wave equation
D) 1-cosw/ (B) Laplace equation
2 (C) Heatequation
98. Fourier transform of (D) Poisson equation
0 {e"", x<0 100. Wave equation is classified as :
X) = is: :

- 10, x>0 (A) - Parabolic equation

A) O (B) Hyperbolic equation
1 (C) Elliptic equation

®) J2n (k - i@) (D) Harmonic equation

ZI-6A/12

(15)
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