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. The set of non-zero complex
~ . numbersforma grOu’p under:

" (A} Addition

“(B) - Muitiplication

(C) Addition as well as muitiplica-
tion - |

(D) .Néne of the above

I S is a subset of the finite group G

under multiplication, then S is a
subgroup of G if and only if 8 is
nonempty and &, b & S implies that :
(A) ahe S |
B ab=1
| -V'--=(C) ables
D) ab!,abe s
3.  The set of integers is a group under
" addition. The number of its elements
: | 6f.ﬂnite order are :
'(EA)“ None
: (B)I- Infinite
L © 1
(D 2z
4. - Anidesal P'isaprime ideal, if :
| (A) Order of P is prime
‘(B). abeP=a,beP
| .l-;_(b). abe P= (a,bye 1 -
(D) abe P = sitheracPorbe P
QS -6A6

M is a maximal ideal of the

. commufative ring Rifand only if :

(A) R/Mis anormal subgroup

(B) RN Misanideal
- {C) R/Misafield

(D) R~ Mis aproperideal

X2+ 1 is the minimal polynomial of i

over:
(A) FieldRaswellas Q

(B Field Qonly
-(C) Field of complex numbers only

(D) Neither RnorQ

if fe FiX] and dégree of fis n, then
f has a splitting field K over F with :

(A [K:F]<nl
(® [K:Fl<n

©) [K:F]snl
D) [K:Fj<n

Tha’ number of primes not exceeding
x, for indefinitely large x, can be

-approximated by:
X
A) logx
‘ expx
® ——
' COX X
© — .
-coshx
@ =
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9.. Forintegersa, b &m; a =b (mod m)
= f(a) = f(b) (mod m) when f()is :
“(A) " Afunction over set of integers
-(B)  Apolynomial - |
(C) A polynomial with integer
coefficients o
(D) A continucus function
10. The number ofsaluttons of 5x " 3y =
52 in positive mtegels are:
(A Two |
(B) Threo )
(C) Infinite
(D) Five
1. Letf(x)is continuous dn [-1, 1], then
Co s
(A) .El)rifferentlabl_e O'h [0;; 1 .
(B) Differentiable at x = -1.and
x=1
| (C) - Uniformly continuous on [-1, 1]
(D) Uniformly continuous on (1, 1)
12. Heine-Borel property ensures that ;
(A)  Anopen cover of a compact set
* has a finite sub-cover
(B) An open subsét of a compact
 sethas a bourided sub-cover
{C) Uniformly continuous functionis
differentiable,
QS - 6A/B

(D) “Uniformly " ‘continuous is

13,

Riemanh Integrable

A curve: defmed by mappmg

g:[a, b]-—»Rk is rectiflable ifgis:
(A) Continucus on[a, b]

~ (B) Has derivative contlnuous on

+

fa, b]

(C) s lntegrable on [a b}

14.

(A) 'Every mfimte serles is

18.

(D) Is monotonlcally mcreasing

Ina COmplete metrtc space

convergent ‘
(B) Everysubsetis compact
(C) Everyrfunction‘i's-‘closed .
(D) . Every Cauchy sequence is

convergent
N
The value of mtegral I sin®xdx is :
o 211
:(_A). 0.
B) ~=n

© %

© -%

16.

The domain of function 3’(}() = gin™!

llog, (¥4)11s :

W) 4

(B [1i-4]

(C) - [1.4]

(D) None ofthe above

(3)
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17. Afunctibn, uniformiy continuous on an
interval [a, b).:
(A) s piedewise continuous on real
~ line
(B) Is differentiable on [a, b]
(C) IsRiemann integrable on{a, b]
(D} Can be subjected to mean

value theorem

18. A curve defined by mapping
v:[a, b] ~s R s called an afc, if :
(A) v(@)=1y(b)
(B) visone-one
(C) yis differentiable -
(D) visone-one and onto

| y
19. f(x) = l/—igf:f1—,forx¢ Ty and

fx)=0,atx= %. What should be

the value of 0. to make £(x) continuous

20. The function f(x) = |x~1|+|x~2]
is:
(A) Continuous atx=1 only

(B) Continuousatx=1andx=2

QS - 6A/6 (4)

21.

22.

23.

24,

(C) Differentiable at x = 1 and
X=2
(D). Notdifferentiable on (1, 2)

Pole of a function is a point where
the function becomes :

(A)  Maximum

(B) Zero

(C) Unbounded

(

(D) Discontinuous

For a complex number z, the value of
2 2

sin“z+cos*zis:
(A) i

B) 1
(C) 1+i
(D) 1-—i

Cauchy's residue thecrem is used to
solve : |

(A) Initial value problems

(B) Boundary value problems

(C) Integral in complex domain

(D) Integral equations

Complex valued function f(z) =] z 12,
for complex z, is analytic :

(A) Nowhere'in complex plane
(B) Atz=Oonly

. {C) Inentire complex plane

D) In éomplex plane except at

z=0

Contd.
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25.

'26.

27,

28.

For analytic f(z) = u + iv, Cauchy-
Riemann equations in polar
coordinates are given by .

(A u= y()' Ug=—V,

(B) rv, =ug vg=-TU

(C) u=v, ug=-vy

_(D) Fu, = Vg, Up = — 1V,

The complex valued function f(z) =
ux, y) +iv{x, y), forz = x + zy, is
analytic if and only if :

(A visderivativeofu

(B) visintegralofu

(C) wuandvare harmonic

(D) vis harmonic conjugate of u

Forz = x+ iy, x> 0 the integrai

Ie"ﬂ dtis equalto:
0
{A) z

1
B) -

A

(C) logz
D) &7

Necessary condition for an arc
z=z(f) (ast<b)tobesmooth,isa:

{A) Continuous z'{t)
(8) Integrable é(t)

{C) Differentiable z{t)
(D) Harmonic z(t)

QS - 6A/6

29.

- 30.

31.

32.

Residue of complex valued function

{1 ;
zcos("‘] atz=0is:
z

1
Ay -7
1
B -3
1
© -3

D) -1

+b
The transformation w = az+> with
cz+d

complex constants a, b, ¢, d makes
a bilinear transformation when :

(A) ad-bc=0

(B) ad-bc#0

| o

il

©

ol

ol

(D)

Which of the following shape does
not make a convex region ?

(A) Rectangle
(B) Elliipse
(C) Triangle
(D) Star

.Maximum value of 2x1‘+ 311(2 subject

tothe condftions.ifxzao, X, =%, <1,
X, +x, 2308 - _ .
(A) Infinite

(B) 15

(C) 28

(D) 65

(Tum over)
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35.

)

QS - 6A/6

>

s

58,

An unbalanced assignment probiem
can be solved by converting into a

balanced assignment problem by

introducing dummy person or a
dummy job with :

(A} Minimurn Cost
(B) Ma;ﬁimum Ccst
{C) ZeroCost

(D) Mean Cost

in VED classification to enhance the

ih'ventory control efficiency, alphabet

~ Dstandsfor:
(A) [jemand

(B) Desirable
(C) Delivery
(D) Decoupling

EPQ model of inventory associates
mainly with :

(A) Manufacturing environment -

(B) Price discounts

(C) Larger consumption

(D) Cheapertransportation

A saddle point of a game is that
place in thg payoff matrix where :
(A)  Minimum of the row maxima =
~ minimum of the column
maxima | _ |
(B) Maximum of the row minima =
maximum ofthe column minima

(6)

37.

38,

39,

40,

(C) Maximum of the row minima =
minimum of the column maxima

(D} Minimum of the row maxima =

maximum of the columnminima .

The function to be maximizﬁed {or
minimized) in linear programmirng
procedure is called :

(A) Target function _

(B) Opfimised function

(C) Subjective fun1c?io_n |

(D) Objective function

The main basic function of inventory
is to.: ‘

(A) Increasethe manufé‘ctu ring
(B) Increase the profitability
(C) Increase the consumption

(D) Constructthe marketing suppor

if a standard problem and its dual are
both feasible, then both are called :

(A) Bounded feasible

(B) Dualfeasible
(C) Co-feasible

(D) Optimum feasible

Maximum of5x-¥2y+zforx, v,220
andx+3y-z<6;y+z<4,; 3+
y<7, comesfrom

A x=74.y=1,223

A

B) x=%,y=3,2=0
(C) x=%,y=3,z=1
(D) x=14,y=0,z=4

‘ Contd.




41.

- 42,

43.

. 44.

“replacedby:

(B) Adcubic equatton

~tosolve.:

For*Simpson:rule to solve a definite
integral, each section of the curve is

(A) Asecantchord

(B) Atangentto curve

(C)- Aseconddegree curve

(D) Asplinearc

ésuss elimination rhethod solves: 47

|(A)_ A system of Itnear equattons

- (C) An algebraic eguation of

degree 4

- {D) - Anintegral equation

Gauss-Siedel method represents': 48

(A) Amatrixinversion .
(B) Aninterative procedure
(C) Anintegral evaluation

(D) Aninterpolation technigque

Newton-Raphson methodis applied - -

‘- (A) ' An algebraic equation

45,

(BY Atranscendental equation
€) A system of s1mu|taneous

“equations
(D) Any of these

-Runge Kutta methods are used to
. solve the differential equation of :

(A) Uptosecond order
(B) Uptoorderthree

| QS —B6A/6 (7)

46.

49,

50.

. (C)  Firstorderonly

(D) Anyorder .

Cramer's rule is used to solve :
(A) -Anintegral

©(BY Asystem of lineerequations

(C) Analgebraic equation
(D) Noneofthese -

Jacobi’'s method requires the

~ coefficignt matrix in system of

equations to he -

- (A) Symmetric

(B) Hermitian

{C) : Sparse

(D) Diagonally dominant -

Order to convergence of secant

method is approxamateiy

() 1427
B) 1618
©) 1.84
©) 20

When performmg Gausstan elimina-

- tion, the pivot represents the :

(A) Largest element in column
(B) Largest element in row
(C) ‘Largest element in matrix

(D) Diagonal element

éhootihg method is used to solve :
(A)  Any differential equation
(B) Onlyinitial value pro'b[ems
(C) Only boundary value problems |
(D) System of differential equations

(Turn over)




51.

52,

53.

54.

If a function f is measurable then:

(A) | f|is always measurable

(B) | £ | is bounded but not

measurable

(C) - f may be measurable subject
fo sorne conditions -

(D) Then £ should be a limit to
- sequence of functions

Inthe definition of Reimann-Stieltjes

integi‘al, given by _[ F{x) dot (x), the
. e .

function a(x), x € [a, bl musthe a:

(A} - Continuous function |

(B) Monotonically decreasing
function

(C) Monotonically increasing
function .

(D) Differentiablefunlction_

If fis a non-negafive measurable

function and [ [fdm =0then fis:

" (A) Aconstant
(B) Zeroeverywhere

(C) A_penodlcfunctuon '

(D) Zero, almost everywhere

For metric space X with metric d, the
map ¢ : X — X is a contraction of X,
if,forx,y e X:

(A) d(0(x), oY) <

positive ¢

cd(x, y) with finite

- (B) d(0(x), (y)) < cd(x, y) with real

c<i

 QS-6AB

55.

56.

57.

- (C) d(o(, oy = cd(x y)withO<c

<1

(D)  d($(x), d(y)) < cd(x, y) with real
c<1

A real valued function defined on a
measurable space is called a simple
functionif :

(A} The domain of the function is
finite

(B) The range of the function is
finite

(C) Measurable space is a vector
space

(D) Function is a contraction map

The series (n + 1) - (n)"3is

(A) Convergent

(B) Divergent

- (C) Oscillatory
(D) Apower series

If{f,}isa monotone increasing

sequence of non-negative

‘measurable functions from 8 to R
Isfndm.-This '

then [, fdm =1lim___
theorem is known as :
(A) Bounded
~ Theorem

Convergence

(B) Dominated Convergence

Theorem

(C) Mdnotone |
Theorem

Convergence

(D) MOnotone Measure Theorem

Contd.




58. What is the length of an arc of the '

59.

60.

61.

curve y = 1 — In(cos x) intercepted
betweenx=0andx=n/4?

A In(v2+1)

® hn(v2+2)

C) 1-Iny2

(D) None ofthese

The value of I sin xlog(sin X} dxis :
5 ‘

® tog()

® 1log(%)

©) log(%)

A
®) 1og(%)

1 :
The value of integral | ({X] - x)dx
-1

is :

A -1
B) 2
< 1

(D) O

A norm on a vector space X is a
function, whose range is a set of :

(A) Rational numbers

(B) Positive real numbers
(C) Realnumbers:

(D) Non-negative real numbers

QS - 6A/6

62.

63.

64.

65.

‘According to Bansch's criterion, a

normed vector spacoXis complete

ifand onlyifevery:  © '

(A) Absolutely convergen: series in
Xis convergent

(B) Convergent series in X is
uniformly convergent

(C) Series in X is uniformly
convergent _

(D) Series in X is absolutely
convergent '

Given a vector space X with a
. subspace M. The codimension of M

isthe:

(A) g.c.d. of dimension of X and M

(B) Number of functions from X to
M

(C) Dimension of quotient space |
X/M

(D) Dim_ensién of largest normed
subspace of X

A preorder < on a set is a binary
relation that satisfies the properties
of . -

(A) Reflexivity |

(B) Reflexivity and Transitivity

) Transitivity |

(D) Symmetry and Reflexivity

A boun‘déd (linear) operator from X to

Yisalineartransformation T: X—Y
'such that the operator norm || T || is :

(A) Finite

(B) Zero
(C) Infinite
(D) Unity

(Turn over)



66.

67.

(A).
()

68.

89,
Ali__;‘:)'rthondrm.al bases of Hare :

" (C)
(D)

Let (H, <>) be an inner product

Let E af.d
Te )J.;(c:, F) becomes an open map

- are Banach spaces.

vaoenitis:

A)
B
©)
D)

Bijective
Injective
Surjective

Neither injective nor surjective

Clo'sied-graph theorem is used to

gwe a proof of .
Open mappmg lemma

The prmclple of uniform boun-
: dedness )

Urysohns lemma

Parseval'sidentity

“space, then fora, be H, the relation

Iy +Hx-yl?
-5, isknownas:

2ux_||2+2uyu

(A) F’ythagorean theorem

- (B Law of convextty

"(C) Re1sz—F|schertheorem

_(D) ;Parailelogram Law |

LetHbea separable Hilbert space.

(A) Countable -
(B)
(C)

(D)

‘DenseinH
Proper closed subspaces

Separabie

QS - 6A6

(10)

70.

)
A

72,

73.

G

For an orthohormal subset p of H,
which of the following are equivalent ?

(1) Bisa basis.
(2) Bis complete.
. (3) Spanp=H.
(1) and (2)
(2)and (3)
(1)and (3)
Al of these

(B)
€

Linear operator A on a finite-
dimensional vector space X is one-
to-one if and onlyif :

(A) Therange of Aisall ofX
(B) The domain of Ais subsetof X
()

“The domain and range of Ais
subset of X

(D) The domain of Ais alf of X

IfAis an % n nonsingular matrix, then
adj(adjA) is equal to :

(A A2

® [Al"A

(©) |AI"

O 1AP%A

A équére matrix A is singular if and

~onlyifits: '

(A _Cblumnsl are linearly
mdependent

(B). Rowsare Ilnearly mdependent

Columns are linearly dependent

Eigenvalues are non-zero

Contd.




74,

If 0. is an eligenvalue of a nonsingular
matrix A then corresponding
eigenvalue of adjoint of Awill be :
A Ao
- (B) Al
C) 1Al
(D) A"
75. Of a square maitrix, the product of its
eigenvalues is equalto :
- {A). Sumof i_ts diagonal elements
(B8) Product of its diagonal
elements ‘
(C) s determinant
(D) Determinant of its adjoint
76. What value of k makes the vectors
(1,-1,3),(1,2,-2), (k, 0, 1) lineariy
dependent ?
™ ¥
®. %
© Y
3
®) %,
77. Which of the following maps are
linear transformations ?
(1) T:R% - R defined by
T(x, y)=|2x-3y|
QS - 6A/6

79.

80.

(11)

78.

@2 T:R*- R defined by
Ty =y
(3) T:R®-s R?defined by
T, ¥, 2)=(z,x+Y)
(A) Allofthese
(B)
©
D)

The rank of T: R? — R, defined as

1and 2 only
3only
2and 3 only

Ty = (x+y, X-y,y)is:

A) 3
(B) 2

S (©) 1

(D) 0

The eigenvalues for T : R:‘3 —» R®
defined by T(x, y, 2) = (3x + y + 4z,
2y +6z,5z) are |

(A) 2,3andb

B) 3,4and5

(C) 2,3and4

(D) 1,2and3

Thé dimension of the vector speice

~ Coverthe field of real numbers is :

(A) 1
(B) Infinite
© 2
(D) 4

(Turn over)




81. Letp denotes the statement "Rahul

is rich” and g denotes the statement
“Rahulis happy”. Then the statement

. "Rahulis poor or he is both rich and

unhappy" is expressed as :

(A) ~pV{pa~q)

(B) pVipa~aq)
(€) ~pV(pag)
(D) BVipaq)

82, Interms ofd, p-:>‘q is expressed as :
® Plad@ip
B (~playl(~qlp)
€) (~pla)l(~pla)
@) @eiglpla
83, Aposet (L, <) becomes . a lattice
when every non-empty finite subset
of Lhas .
(A) A'supremum
(8) Aninfimum -
(C) A supremum as well as an
ipﬁmum
(D) Meither supremum notinﬁmum
34. inthelatticeL={1,2,3,5,6, 10, 15,
30} ordered by divisibility, the atoms
are: o ‘
Ay 1,2,3,5
B) 2,356
) 1,23
D) 3,5 -
(& - BA/E

85,

86.

87.

88,

(12)

Inrecurrencerefationa,, ,—2a,,, +4a,
a,=2,8,=1,the aris given by :
(A) 1+2r+2"

B) 1+2r-2f

C) 1-2r-2f

(D) 1-2r+2f

Thedualofa+ab=a+bis:

{A) a(a’+b)=ab
(B) a(@+b)=ab

(C) afa+b)=ab
(D) a’(a +b)=ab

For every pair of elements a and b,

DeMorgan’s laws in Beolean algebra

are:

(A) (a+by=a'+b'&(a «by=a'*b’
(B) fa+by=b'+a’&(@axby=b=a

(C) (atbysa' «b'&(arby=a'+b’

D)y (a+by=axb&(axb)y=a+b

- Inminimal form, the function f{(x, y, 2)
= Xyz + Xy'z + X'yz + X'y'z is written

“as.

(A f=2
(B) f=z
(C) f=xtz

(D) f=y+z

‘Contd.




89,

90

g1,

92,

QS - 6A/6

Let a simple graph.of 15 edges, 3
vertices of degl;ee 4 and all other
vertices of degree 3. The number of

edges in this graph are :
(A) 6

(B)
(&)
(D) 10

Nullity of a complete graph of 7

vertices is :

A 7

(B) 8

(C) 14

D)y 21

Frobenius’ method is used to find the
power series solution of ;

(A) Integral equations

(B) Ordinary differential equations

with variable cosfficients
(C) Partial differential equations

(D) Integro-differential equations

The differential equation (1 — x?)
d?y  dy

Rl SR, Wihet & =0
2 de +mim + 1)y = 0is

known as :

(A) Bessel's equation

~ (C) Kelvin's equation,

- 93,

- 04,

05.

(13)

© Logenasiaton

((B) Hermite's'squation "y« i 15

o

For J_(x) being Bessel's function of
first kind, "C"d;[xndn (X)J is equalto:
A XN, 00

® x"N .

©) x,_ )

@) X" (x) |

Forx— 0, Jn(x) is approximated as :
1 (x\
) in+1) (5)
| 1 (x)"
Ty (_f)

1
© Tr+1

©) I'(n) (
| §
Heat conduction equation is

classified as :

(A) Hyperbolicequation -

(B) Parabolic equation

(C) Elliptic equation

(0} Harmonic equation

‘\71
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86.

97.

8.

, sinht
L.aplace transform of: -*%M is:

1‘.;,;,(5&)
(A) : ‘2‘5‘11 s+-14

)

. 1
inverse Ldp!ace transform of *é—-:_f-

is:

" %exn(%i)

5 (

(8). zexp(stj |
2 3

(€) 5 (—24)

1 5\7 i

(D)_ geXP(Z )

For a function, givén by f’(x)l 1 for

lx]<abutf(x) 0for|x|>a the,__

F ouﬁertransform (s gi\,'en by

(A ;-S[cos(s_a)_;;:,_ L

(B) %sin(.sa) '

L AC) _—;gcos(sa)

99,

®) Zsin(sa)
a
If f(s) denotes the Fourier fransform

of F(x}, then the Fourier transform of

-F(ax)is given by :

Cwf)

®) - fise)
(C) af(sa)

O -gf(SJ

ou-

'1=§":'..:u:‘- SR a '
. _ , gy im .
100. The equatlop ) + 5 0, is

known as:

_(A) Burgersequation
| (B) . Transport .e_q,ua,tlon‘
(C) Schrodinger's equation

. (D) . Maxwell's equation -
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